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Numerical Evaluation of
Dynamic Response

PREVIEW

Analytical solution of the equation of motion for a single-degree-of-freedom system is

usually not possible if the excitation—applied force p(t) or ground acceleration üg(t)—

varies arbitrarily with time or if the system is nonlinear. Such problems can be tackled

by numerical time-stepping methods for integration of differential equations. A vast body

of literature, including major chapters of several books, exists about these methods for

solving various types of differential equations that arise in the broad subject area of applied

mechanics. The literature includes the mathematical development of these methods; their

accuracy, convergence, and stability properties; and computer implementation.

Only a brief presentation of a very few methods that are especially useful in dynamic

response analysis of SDF systems is included here, however. This presentation is intended

to provide only the basic concepts underlying these methods and to provide a few computa-

tional algorithms. Although these would suffice for many practical problems and research

applications, the reader should recognize that a wealth of knowledge exists on this subject.

5.1 TIME-STEPPING METHODS

For an inelastic system the equation of motion to be solved numerically is

mü + cu̇ + fS(u) = p(t) or −müg(t) (5.1.1)

subject to the initial conditions

u0 = u(0) u̇0 = u̇(0)
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The system is assumed to have linear viscous damping, but other forms of damping, in-

cluding nonlinear damping, could be considered, as will become obvious later. However,

this is rarely done for lack of information on damping, especially at large amplitudes of

motion. The applied force p(t) is given by a set of discrete values pi = p(ti ), i = 0 to N

(Fig. 5.1.1). The time interval

1ti = ti+1 − ti (5.1.2)

is usually taken to be constant, although this is not necessary. The response is determined at

the discrete time instants ti , denoted as time i ; the displacement, velocity, and acceleration

of the SDF system are ui , u̇i , and üi , respectively. These values, assumed to be known,

satisfy Eq. (5.1.1) at time i :

müi + cu̇i + ( fS)i = pi (5.1.3)

where ( fS)i is the resisting force at time i ; ( fS)i = kui for a linearly elastic system but

would depend on the prior history of displacement and on the velocity at time i if the

system were nonlinear. The numerical procedures to be presented will enable us to deter-

mine the response quantities ui+1, u̇i+1, and üi+1 at time i + 1 that satisfy Eq. (5.1.1) at
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Figure 5.1.1 Notation for time-stepping methods.
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time i + 1:

müi+1 + cu̇i+1 + ( fS)i+1 = pi+1 (5.1.4)

When applied successively with i = 0, 1, 2, 3, . . . , the time-stepping procedure gives the

desired response at all time instants i = 1, 2, 3, . . . . The known initial conditions, u0 =
u(0) and u̇0 = u̇(0), provide the information necessary to start the procedure.

Stepping from time i to i + 1 is usually not an exact procedure. Many approximate

procedures are possible that are implemented numerically. The three important require-

ments for a numerical procedure are (1) convergence—as the time step decreases, the nu-

merical solution should approach the exact solution, (2) stability—the numerical solution

should be stable in the presence of numerical round-off errors, and (3) accuracy—the nu-

merical procedure should provide results that are close enough to the exact solution. These

important issues are discussed briefly in this book; comprehensive treatments are available

in books emphasizing numerical solution of differential equations.

Three types of time-stepping procedures are presented in this chapter: (1) methods

based on interpolation of the excitation function, (2) methods based on finite difference

expressions of velocity and acceleration, and (3) methods based on assumed variation of

acceleration. Only one method is presented in each of the first two categories and two from

the third group.

5.2 METHODS BASED ON INTERPOLATION OF EXCITATION

A highly efficient numerical procedure can be developed for linear systems by interpolating

the excitation over each time interval and developing the exact solution using the methods

of Chapter 4. If the time intervals are short, linear interpolation is satisfactory. Figure 5.2.1

shows that over the time interval ti ≤ t ≤ ti+1, the excitation function is given by

p(τ ) = pi +
1pi

1ti
τ (5.2.1a)

t

p

Interpolated: p(τ)

Actual

pi

pi+1

ti ti+1

∆ti

τ
Figure 5.2.1 Notation for linearly

interpolated excitation.
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procedures are possible that are implemented numerically. The three important require-

ments for a numerical procedure are (1) convergence—as the time step decreases, the nu-

merical solution should approach the exact solution, (2) stability—the numerical solution

should be stable in the presence of numerical round-off errors, and (3) accuracy—the nu-

merical procedure should provide results that are close enough to the exact solution. These

Three types of time-stepping procedures are presented in this chapter: (1) methods

based on interpolation of the excitation function, (2) methods based on finite difference

expressions of velocity and acceleration, and (3) methods based on assumed variation of

acceleration. Only one method is presented in each of the first two categories and two from
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where

1pi = pi+1 − pi (5.2.1b)

and the time variable τ varies from 0 to 1ti . For algebraic simplicity, we first consider

systems without damping; later, the procedure will be extended to include damping. The

equation to be solved is

mü + ku = pi +
1pi

1ti
τ (5.2.2)

subject to initial conditions u(0) = ui and u̇(0) = u̇i . The response u(τ ) over the time

interval 0 ≤ τ ≤ 1ti is the sum of three parts: (1) free vibration due to initial displacement

ui and velocity u̇i at τ = 0, (2) response to step force pi with zero initial conditions, and

(3) response to ramp force (1pi/1ti )τ with zero initial conditions. Adapting the available

solutions for these three cases from Sections 2.1, 4.3, and 4.4, respectively, gives

u(τ ) = ui cos ωnτ +
u̇i

ωn

sin ωnτ +
pi

k
(1− cos ωnτ)+ 1pi

k

(

τ

1ti
− sin ωnτ

ωn 1ti

)

(5.2.3a)

and differentiating u(τ ) leads to

u̇(τ )

ωn

= −ui sin ωnτ +
u̇i

ωn

cos ωnτ +
pi

k
sin ωnτ +

1pi

k

1

ωn 1ti
(1− cos ωnτ) (5.2.3b)

Evaluating these equations at τ = 1ti gives the displacement ui+1 and velocity u̇i+1 at

time i + 1:

ui+1 = ui cos(ωn 1ti )+
u̇i

ωn

sin(ωn 1ti )

+ pi

k
[1− cos(ωn 1ti )]+

1pi

k

1

ωn 1ti
[ωn 1ti − sin(ωn 1ti )] (5.2.4a)

u̇i+1

ωn

= −ui sin(ωn 1ti )+
u̇i

ωn

cos(ωn 1ti )

+ pi

k
sin(ωn 1ti )+

1pi

k

1

ωn 1ti
[1− cos(ωn 1ti )] (5.2.4b)

These equations can be rewritten after substituting Eq. (5.2.1b) as recurrence formulas:

ui+1 = Aui + Bu̇i + Cpi + Dpi+1 (5.2.5a)

u̇i+1 = A′ui + B ′u̇i + C ′ pi + D′ pi+1 (5.2.5b)

Repeating the derivation above for under-critically damped systems (i.e., ζ < 1)

shows that Eqs. (5.2.5) also apply to damped systems with the expressions for the coeffi-

cients A, B, . . . , D′ given in Table 5.2.1. They depend on the system parameters ωn , k,

and ζ , and on the time interval 1t ≡ 1ti .

Since the recurrence formulas are derived from exact solution of the equation of

motion, the only restriction on the size of the time step 1t is that it permit a close approxi-

mation to the excitation function and that it provide response results at closely spaced time

intervals so that the response peaks are not missed. This numerical procedure is especially
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TABLE 5.2.1 COEFFICIENTS IN RECURRENCE FORMULAS (ζ < 1)

A = e−ζωn 1t

(

ζ
√

1− ζ 2
sin ωD 1t + cos ωD 1t

)

B = e−ζωn 1t

(

1

ωD
sin ωD 1t

)

C = 1

k

{

2ζ

ωn 1t
+ e−ζωn 1t

[(

1− 2ζ 2

ωD 1t
− ζ
√

1− ζ 2

)

sin ωD 1t −
(

1+ 2ζ

ωn 1t

)

cos ωD 1t

]}

D = 1

k

[

1− 2ζ

ωn 1t
+ e−ζωn 1t

(

2ζ 2 − 1

ωD 1t
sin ωD 1t + 2ζ

ωn 1t
cos ωD 1t

)]

A′= −e−ζωn 1t

(

ωn
√

1− ζ 2
sin ωD 1t

)

B′= e−ζωn 1t

(

cos ωD 1t − ζ
√

1− ζ 2
sin ωD 1t

)

C ′= 1

k

{

− 1

1t
+ e−ζωn 1t

[(

ωn
√

1− ζ 2
+ ζ

1t
√

1− ζ 2

)

sin ωD 1t + 1

1t
cos ωD 1t

]}

D′= 1

k 1t

[

1− e−ζωn 1t

(

ζ
√

1− ζ 2
sin ωD 1t + cos ωD 1t

)]

useful when the excitation is defined at closely spaced time intervals—as for earthquake

ground acceleration—so that the linear interpolation is essentially perfect. If the time step

1t is constant, the coefficients A, B, . . . , D′ need to be computed only once.

The exact solution of the equation of motion required in this numerical procedure is

feasible only for linear systems. It is conveniently developed for SDF systems, as shown

above, but would be impractical for MDF systems unless their response is obtained by the

superposition of modal responses (Chapters 12 and 13).

Example 5.1

An SDF system has the following properties: m = 0.2533 kip-sec2/in., k = 10 kips/in.,

Tn = 1 sec (ωn = 6.283 rad/sec), and ζ = 0.05. Determine the response u(t) of this system

to p(t) defined by the half-cycle sine pulse force shown in Fig. E5.1 by (a) using piecewise

linear interpolation of p(t) with 1t = 0.1 sec, and (b) evaluating the theoretical solution.

Solution

1. Initial calculations

e−ζωn 1t = 0.9691 ωD = ωn

√

1− ζ 2 = 6.275

sin ωD 1t = 0.5871 cos ωD 1t = 0.8095
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t, sec

p, kips

0.6

10

5

8.66
10

8.66

5

10 sin (πt / 0.6)

Piecewise linear
interpolation

Figure E5.1

Substituting these in Table 5.2.1 gives

A = 0.8129 B = 0.09067 C = 0.01236 D = 0.006352

A′ = −3.5795 B′ = 0.7559 C ′ = 0.1709 D′ = 0.1871

2. Apply the recurrence equations (5.2.5). The resulting computations are summarized

in Tables E5.1a and E5.1b.

TABLE E5.1a NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

ti pi Cpi Dpi+1 Bu̇i u̇i Aui ui Theoretical ui

0.0 0.0000 0.0000 0.0318 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 5.0000 0.0618 0.0550 0.0848 0.9354 0.0258 0.0318 0.0328

0.2 8.6602 0.1070 0.0635 0.2782 3.0679 0.1849 0.2274 0.2332

0.3 10.0000 0.1236 0.0550 0.4403 4.8558 0.5150 0.6336 0.6487

0.4 8.6603 0.1070 0.0318 0.4290 4.7318 0.9218 1.1339 1.1605

0.5 5.0000 0.0618 0.0000 0.1753 1.9336 1.2109 1.4896 1.5241

0.6 0.0000 0.0000 0.0000 −0.2735 −3.0159 1.1771 1.4480 1.4814

0.7 0.0000 0.0000 0.0000 −0.6767 −7.4631 0.7346 0.9037 0.9245

0.8 0.0000 0.0000 0.0000 −0.8048 −8.8765 0.0471 0.0579 0.0593

0.9 0.0000 0.0000 0.0000 −0.6272 −6.9177 −0.6160 −0.7577 −0.7751

1.0 0.0000 −2.5171 −1.2432 −1.2718

3. Compute the theoretical response. Equation (3.2.5)—valid for t ≤ 0.6 sec,

Eq. (2.2.4) modified appropriately—valid for t ≥ 0.6 sec, and the derivatives of these two

equations are evaluated for each ti ; the results are given in Tables E5.1a and E5.1b.

4. Check the accuracy of the numerical results. The numerical solution based on

piecewise linear interpolation of the excitation agrees reasonably well with the theoretical

solution. The discrepancy arises because the half-cycle sine curve has been replaced by the

series of straight lines shown in Fig. E5.1. With a smaller 1t the piecewise linear approxima-

tion would be closer to the half-cycle sine curve, and the numerical solution would be more

accurate.
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TABLE E5.1b NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

ti pi C ′ pi D′ pi+1 A′ui ui B′u̇i u̇i Theoretical u̇i

0.0 0.0000 0.0000 0.9354 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 5.0000 0.8544 1.6201 −0.1137 0.0318 0.7071 0.9354 0.9567

0.2 8.6602 1.4799 1.8707 −0.8140 0.2274 2.3192 3.0679 3.1383

0.3 10.0000 1.7088 1.6201 −2.2679 0.6336 3.6708 4.8558 4.9674

0.4 8.6603 1.4799 0.9354 −4.0588 1.1339 3.5771 4.7318 4.8408

0.5 5.0000 0.8544 0.0000 −5.3320 1.4896 1.4617 1.9336 1.9783

0.6 0.0000 0.0000 0.0000 −5.1832 1.4480 −2.2799 −3.0159 −3.0848

0.7 0.0000 0.0000 0.0000 −3.2347 0.9037 −5.6418 −7.4631 −7.6346

0.8 0.0000 0.0000 0.0000 −0.2074 0.0579 −6.7103 −8.8765 −9.0808

0.9 0.0000 0.0000 0.0000 2.7124 −0.7577 −5.2295 −6.9177 −7.0771

1.0 0.0000 −1.2432 −2.5171 −2.5754

5.3 CENTRAL DIFFERENCE METHOD

This method is based on a finite difference approximation of the time derivatives of dis-

placement (i.e., velocity and acceleration). Taking constant time steps, 1ti = 1t , the

central difference expressions for velocity and acceleration at time i are

u̇i =
ui+1 − ui−1

21t
üi =

ui+1 − 2ui + ui−1

(1t)2
(5.3.1)

Substituting these approximate expressions for velocity and acceleration into Eq. (5.1.3),

specialized for linearly elastic systems, gives

m
ui+1 − 2ui + ui−1

(1t)2
+ c

ui+1 − ui−1

21t
+ kui = pi (5.3.2)

In this equation ui and ui−1 are assumed known (from implementation of the pro-

cedure for the preceding time steps). Transferring these known quantities to the right side

leads to
[

m

(1t)2
+ c

21t

]

ui+1 = pi −
[

m

(1t)2
− c

21t

]

ui−1 −
[

k − 2m

(1t)2

]

ui (5.3.3)

or

k̂ui+1 = p̂i (5.3.4)

where

k̂ = m

(1t)2
+ c

21t
(5.3.5)

and

p̂i = pi −
[

m

(1t)2
− c

21t

]

ui−1 −
[

k − 2m

(1t)2

]

ui (5.3.6)

−ui+ ui−+1 −1=u̇i
2 t21t

− +ui+ 2ui ui−+1 −1=üi
t))2(1t

− + −ui+ 2ui ui− ui+ ui−+1 −1 +1 −1+ + =m c kui pi
t))2 2 t(1t 21t

[ ] [ ] [ ]

m c m c 2m+ = − − − −
]

ui+ pi

]

ui−

[

k

]

ui+1 −1
t))2 2 t t))2 2 t t))2

[

(1t 21t

[

(1t 21t (1t

= ˆk̂ui+ = p̂= ˆ= ˆi+1

m c= +k̂
t))2 2 t(1t 21t

[ ] [ ]

m c 2m= − − − −p̂i pi

]

ui−

[

k

]

ui−1
t))2 2 t t))2

[

(1t 21t (1t
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TABLE 5.3.1 CENTRAL DIFFERENCE METHOD†

1.0 Initial calculations

1.1 ü0 =
p0 − cu̇0 − ku0

m
.

1.2 u−1 = u0 −1t u̇0 +
(1t)2

2
ü0.

1.3 k̂ = m

(1t)2
+ c

21t
.

1.4 a = m

(1t)2
− c

21t
.

1.5 b = k − 2m

(1t)2
.

2.0 Calculations for time step i

2.1 p̂i = pi − aui−1 − bui .

2.2 ui+1 =
p̂i

k̂
.

2.3 If required: u̇i =
ui+1 − ui−1

21t
; üi =

ui+1 − 2ui + ui−1

(1t)2
.

3.0 Repetition for the next time step

Replace i by i + 1 and repeat steps 2.1, 2.2, and 2.3 for the next time step.

† If the excitation is ground acceleration üg(t), according to Eq. (1.7.6), replace pi by

−mügi in Table 5.3.1. The computed ui , u̇i , and üi give response values relative to the

ground. If needed, the total velocity and acceleration can be computed readily: u̇t
i
=

u̇i + u̇gi and üt
i
= üi + ügi .

The unknown ui+1 is then given by

ui+1 =
p̂i

k̂
(5.3.7)

The solution ui+1 at time i + 1 is determined from the equilibrium condition, Eq. (5.1.3),

at time i without using the equilibrium condition, Eq. (5.1.4), at time i + 1. Such methods

are called explicit methods.

Observe in Eq. (5.3.6) that known displacements ui and ui−1 are used to compute

ui+1. Thus u0 and u−1 are required to determine u1; the specified initial displacement u0

is known. To determine u−1, we specialize Eq. (5.3.1) for i = 0 to obtain

u̇0 =
u1 − u−1

21t
ü0 =

u1 − 2u0 + u−1

(1t)2
(5.3.8)

Solving for u1 from the first equation and substituting in the second gives

u−1 = u0 −1t (u̇0)+
(1t)2

2
ü0 (5.3.9)

†TABLE 5.3.1 CENTRAL DIFFERENCE METHOD†

p̂i=ui++1 ˆ̂k
+The solution ui+ at time i 1 is determined from the equilibrium condition, Eq. (5.1.3),+1 1 is determined from the equilibrium condition, Eq. (5.1.3),

+at time i without using the equilibrium condition, Eq. (5.1.4), at time i 1. Such methods

are called explicit methods.

Observe in Eq. (5.3.6) that known displacements ui and ui− are used to compute−1

ui+1. Thus. Thus u0 and u− are required to determine u1; the specified initial displacement; the specified initial displacement u0−1 ; the specified initial displacement

=is known. To determine u−−1, we specialize Eq. (5.3.1) for, we specialize Eq. (5.3.1) for i 0 to obtain

− − +u1 u− u1 2u0 u−−1 −1= =u̇0 ü0 (5.3.8)
2 t t))221t (1t

Solving for u1 from the first equation and substituting in the second gives

2t)2(1t= − +u− u0 u̇0) ü01t (u−1
2
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The initial displacement u0 and initial velocity u̇0 are given, and the equation of motion at

time 0 (t0 = 0),
mü0 + cu̇0 + ku0 = p0

provides the acceleration at time 0:

ü0 =
p0 − cu̇0 − ku0

m
(5.3.10)

Table 5.3.1 summarizes the above-described procedure as it might be implemented on the

computer.

The central difference method will “blow up,” giving meaningless results, in the

presence of numerical round-off if the time step chosen is not short enough. The specific

requirement for stability is

1t

Tn

<
1

π
(5.3.11)

This is never a constraint for SDF systems because a much smaller time step should be

chosen to obtain results that are accurate. Typically, 1t/Tn ≤ 0.1 to define the response

adequately, and in most earthquake response analyses even a shorter time step, typically

1t = 0.01 to 0.02 sec, is chosen to define the ground acceleration üg(t) accurately.

Example 5.2

Solve Example 5.1 by the central difference method using 1t = 0.1 sec.

Solution

1.0 Initial calculations

m = 0.2533 k = 10 c = 0.1592

u0 = 0 u̇0 = 0

1.1 ü0 =
p0 − cu̇0 − ku0

m
= 0.

1.2 u−1 = u0 − (1t)u̇0 +
(1t)2

2
ü0 = 0.

1.3 k̂ = m

(1t)2
+ c

21t
= 26.13.

1.4 a = m

(1t)2
− c

21t
= 24.53.

1.5 b = k − 2m

(1t)2
= −40.66.

2.0 Calculations for each time step

2.1 p̂i = pi − aui−1 − bui = pi − 24.53ui−1 + 40.66ui .

2.2 ui+1 =
p̂i

k̂
= p̂i

26.13
.

3.0 Computational steps 2.1 and 2.2 are repeated for i = 0, 1, 2, 3, . . . leading to Table E5.2,

wherein the theoretical result (from Table E5.1a) is also included.

− −p0 ccu̇0 ku0=ü0
m

The central difference method will “blow up,” giving meaningless results, in the

presence of numerical round-off if the time step chosen is not short enough. The specific

requirement for stability is

t 11t
<

TnTT π

This is never a constraint for SDF systems because a much smaller time step should beThis is never a constraint for SDF systems because a much smaller time step should be

≤chosen to obtain results that are accurate. Typically, t//TnTT 0.1 to define the response1t

adequately, and in most earthquake response analyses even a shorter time step, typicallyadequately, and in most earthquake response analyses even a shorter time step, typically

=
adequately, and in most earthquake response analyses even a shorter time step, typically

t 0.01 to 0.02 sec, is chosen to define the ground acceleration üg((t) accurately.1t

Example 5.2
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TABLE E5.2 NUMERICAL SOLUTION BY CENTRAL DIFFERENCE METHOD

p̂i ui+1

ti pi ui−1 ui [Eq. (2.1)] [Eq. (2.2)] Theoretical ui+1

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0328

0.1 5.0000 0.0000 0.0000 5.0000 0.1914 0.2332

0.2 8.6602 0.0000 0.1914 16.4419 0.6293 0.6487

0.3 10.0000 0.1914 0.6293 30.8934 1.1825 1.1605

0.4 8.6603 0.6293 1.1825 41.3001 1.5808 1.5241

0.5 5.0000 1.1825 1.5808 40.2649 1.5412 1.4814

0.6 0.0000 1.5808 1.5412 23.8809 0.9141 0.9245

0.7 0.0000 1.5412 0.9141 −0.6456 −0.0247 0.0593

0.8 0.0000 0.9141 −0.0247 −23.4309 −0.8968 −0.7751

0.9 0.0000 −0.0247 −0.8968 −35.8598 −1.3726 −1.2718

1.0 0.0000 −0.8968 −1.3726 −33.8058 −1.2940 −1.2674

5.4 NEWMARK’S METHOD

5.4.1 Basic Procedure

In 1959, N. M. Newmark developed a family of time-stepping methods based on the fol-

lowing equations:

u̇i+1 = u̇i + [(1− γ )1t] üi + (γ 1t)üi+1 (5.4.1a)

ui+1 = ui + (1t)u̇i +
[

(0.5− β)(1t)2
]

üi +
[

β(1t)2
]

üi+1 (5.4.1b)

The parameters β and γ define the variation of acceleration over a time step and determine

the stability and accuracy characteristics of the method. Typical selection for γ is 1
2
, and

1
6
≤ β ≤ 1

4
is satisfactory from all points of view, including that of accuracy. These

two equations, combined with the equilibrium equation (5.1.4) at the end of the time step,

provide the basis for computing ui+1, u̇i+1, and üi+1 at time i + 1 from the known ui ,

u̇i , and üi at time i . Iteration is required to implement these computations because the

unknown üi+1 appears in the right side of Eq. (5.4.1).

For linear systems it is possible to modify Newmark’s original formulation, however,

to permit solution of Eqs. (5.4.1) and (5.1.4) without iteration. Before describing this

modification, we demonstrate that two special cases of Newmark’s method are the well-

known constant average acceleration and linear acceleration methods.

5.4.2 Special Cases

For these two methods, Table 5.4.1 summarizes the development of the relationship be-

tween responses ui+1, u̇i+1, and üi+1 at time i + 1 to the corresponding quantities at time

i . Equation (5.4.2) describes the assumptions that the variation of acceleration over a

time step is constant, equal to the average acceleration, or varies linearly. Integration

of ü(τ ) gives Eq. (5.4.3) for the variation u̇(τ ) of velocity over the time step in which

u̇i++1 = u̇= ˙= ˙ ii + üi )üi++1

ui++11 = uii + )u̇i üi üi++1
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TABLE 5.4.1 AVERAGE ACCELERATION AND LINEAR ACCELERATION METHODS

Constant Average Acceleration Linear Acceleration

t

ü

ti ti+1

üi+1

üi

τ

∆t

t

ü

ti ti+1

üi+1

üi

τ

∆t

ü(τ ) = 1

2
(üi+1 + üi ) ü(τ ) = üi +

τ

1t
(üi+1 − üi ) (5.4.2)

u̇(τ ) = u̇i +
τ

2
(üi+1 + üi ) u̇(τ ) = u̇i + üi τ +

τ 2

21t
(üi+1 − üi ) (5.4.3)

u̇i+1 = u̇i +
1t

2
(üi+1 + üi ) u̇i+1 = u̇i +

1t

2
(üi+1 + üi ) (5.4.4)

u(τ ) = ui + u̇i τ +
τ 2

4
(üi+1 + üi ) u(τ ) = ui + u̇i τ + üi

τ 2

2
+ τ 3

61t
(üi+1 − üi ) (5.4.5)

ui+1 = ui + u̇i 1t + (1t)2

4
(üi+1 + üi ) ui+1 = ui + u̇i 1t + (1t)2

(

1

6
üi+1 +

1

3
üi

)

(5.4.6)

τ = 1t is substituted to obtain Eq. (5.4.4) for the velocity u̇i+1 at time i + 1. Integration

of u̇(τ ) gives Eq. (5.4.5) for the variation u(τ ) of displacement over the time step in which

τ = 1t is substituted to obtain Eq. (5.4.6) for the displacement ui+1 at time i+1. Compar-

ing Eqs. (5.4.4) and (5.4.6) with Eq. (5.4.1) demonstrates that Newmark’s equations with

γ = 1
2

and β = 1
4

are the same as those derived assuming constant average acceleration,

and those with γ = 1
2

and β = 1
6

correspond to the assumption of linear variation of

acceleration.

5.4.3 Linear Systems

For linear systems, it is possible to modify Newmark’s original formulation, to permit solu-

tion of Eqs. (5.4.1) and (5.1.4) without iteration. Specialized for linear systems, Eq. (5.1.4)

becomes

müi+1 + cu̇i+1 + kui+1 = pi+1 (5.4.7)

From Eq. (5.4.1b), üi+1 can be expressed in terms of ui+1:

üi+1 =
1

β(1t)2
(ui+1 − ui )−

1

β1t
u̇i −

(

1

2β
− 1

)

üi (5.4.8)

Constant Average Acceleration Linear AccelerationConstant Average Acceleration Linear Acceleration

+ + =mmüi+ ccu̇i+ kui+ pi++1 +1 +1 +1

From Eq. (5.4.1b), üi+ can be expressed in terms ofcan be expressed in terms of ui+1:+1 :
( )

1 1 1= − − − −üi+ ui+ ui u̇i 1

)

üi(u i )+1 +1
t))2 t

(

2ββ(1t β1t
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Substituting Eq. (5.4.8) into Eq. (5.4.1a) gives

u̇i+1 =
γ

β1t
(ui+1 − ui )+

(

1− γ

β

)

u̇i +1t

(

1− γ

2β

)

üi (5.4.9)

Next, Eqs. (5.4.8) and (5.4.9) are substituted into the governing equation (5.4.7) at time

i + 1. This substitution gives

k̂ui+1 = p̂i+1 (5.4.10)

where

k̂ = k + γ

β1t
c + 1

β(1t)2
m (5.4.11)

and

p̂i+1 = pi+1 +
[

1

β(1t)2
m + γ

β1t
c

]

ui +
[

1

β1t
m +

(

γ

β
− 1

)

c

]

u̇i

+
[(

1

2β
− 1

)

m +1t

(

γ

2β
− 1

)

c

]

üi (5.4.12)

With k̂ and p̂i+1 known from the system properties m, k, and c, algorithm parameters γ

and β, and the state of the system at time i defined by ui , u̇i , and üi , the displacement at

time i + 1 is computed from

ui+1 =
p̂i+1

k̂
(5.4.13)

Once ui+1 is known, the velocity u̇i+1 and acceleration üi+1 can be computed from

Eqs. (5.4.9) and (5.4.8), respectively.

The acceleration can also be obtained from the equation of motion at time i + 1:

üi+1 =
pi+1 − cu̇i+1 − kui+1

m
(5.4.14)

rather than by Eq. (5.4.8). Equation (5.4.14) is needed to obtain ü0 to start the time-

stepping computations [see Eq. (5.3.10)].

In Newmark’s method, the solution at time i + 1 is determined from Eq. (5.4.7), the

equilibrium condition at time i + 1. Such methods are called implicit methods. Although

the resisting force is an implicit function of the unknown ui+1, it was easy to calculate for

linear systems.

Table 5.4.2 summarizes the time-stepping solution using Newmark’s method as it

might be implemented on the computer.

Substituting Eq. (5.4.8) into Eq. (5.4.1a) gives

( ) ( )

γ γ γ= − + − + −u̇i+ ui+ ui

(

1 u̇i t

(

1 üi(u i ) 1t+1 +1
t 2ββ1t β

Next, Eqs. (5.4.8) and (5.4.9) are substituted into the governing equation (5.4.7) at timeNext, Eqs. (5.4.8) and (5.4.9) are substituted into the governing equation (5.4.7) at time

+i 1. This substitution gives

ˆ = ˆk̂ui+ = p̂= ˆ= ˆi++1 +1

k̂ k c m

[ ] [ ( ) ]

1 1γ
(

γ= + + + + −p̂i+ pi+ m c

]

ui m 1

)

c

]

u̇i+1 +1
t))2 t t

[

β(1t β1t

[

β1t

(

β
[(

β(1t)
)

β1
(

[

β1
) ]

1 γ+ − + −1

)

m t 1

)

c

]

üi1t

[(

2β

(

2β

p̂i++1=ui++1 ˆ̂k

Once ui+ is known, the velocity u̇i+ and acceleration üi+ can be computed from+1 +1 +1

Eqs. (5.4.9) and (5.4.8), respectively.

+The acceleration can also be obtained from the equation of motion at time i 1:

− −pi+ ccu̇i+ kui++1 +1 +1=üi++1
m

+In Newmark’s method, the solution at time i 1 is determined from Eq. (5.4.7), the

+equilibrium condition at time i 1. Such methods are called implicit methods. Although

the resisting force is an implicit function of the unknown ui+1, it was easy to calculate for, it was easy to calculate for

linear systems.
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TABLE 5.4.2 NEWMARK’S METHOD: LINEAR SYSTEMS†

Special cases

(1) Constant average acceleration method (γ = 1
2

, β = 1
4

)

(2) Linear acceleration method (γ = 1
2

, β = 1
6

)

1.0 Initial calculations

1.1 ü0 =
p0 − cu̇0 − ku0

m
.

1.2 Select 1t .

1.3 a1 =
1

β(1t)2
m + γ

β1t
c; a2 =

1

β1t
m +

(

γ

β
− 1

)

c; and

a3 =
(

1

2β
− 1

)

m +1t

(

γ

2β
− 1

)

c.

1.4 k̂ = k + a1.

2.0 Calculations for each time step, i = 0, 1, 2, . . .

2.1 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi .

2.2 ui+1 =
p̂i+1

k̂
.

2.3 u̇i+1 =
γ

β1t
(ui+1 − ui )+

(

1− γ

β

)

u̇i +1t

(

1− γ

2β

)

üi .

2.4 üi+1 =
1

β(1t)2
(ui+1 − ui )−

1

β1t
u̇i −

(

1

2β
− 1

)

üi .

3.0 Repetition for the next time step. Replace i by i + 1 and implement steps 2.1 to 2.4 for the

next time step.

†If the excitation is ground acceleration üg(t), according to Eq. (1.7.6), replace pi by −mügi in Table 5.4.2.

The computed ui , u̇i , and üi give response values relative to the ground. If needed, the total velocity and

acceleration can be computed readily: u̇t
i
= u̇i + u̇gi and üt

i
= üi + ügi .

Newmark’s method is stable if

1t

Tn

≤ 1

π
√

2

1√
γ − 2β

(5.4.15)

For γ = 1
2

and β = 1
4

this condition becomes

1t

Tn

<∞ (5.4.16a)

This implies that the constant average acceleration method is stable for any 1t , no matter

how large; however, it is accurate only if 1t is small enough, as discussed at the end of

†TABLE 5.4.2 NEWMARK’S METHOD: LINEAR SYSTEMS†

Newmark’s method is stable if

t 1 11t ≤ 1√ √ (5.4.15)
−TnTT 2β

√
2
√

γπ
√

= =For and this condition becomesγ β

t1t ∞<
TnTT

1
2

1
4

This implies that the constant average acceleration method is stable for any t , no matter1t

how large; however, it is accurate only if t is small enough, as discussed at the end ofis small enough, as discussed at the end of1t
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Section 5.3. For γ = 1
2

and β = 1
6
, Eq. (5.4.15) indicates that the linear acceleration

method is stable if

1t

Tn

≤ 0.551 (5.4.16b)

However, as in the case of the central difference method, this condition has little signifi-

cance in the analysis of SDF systems because a much shorter time step than 0.551Tn must

be used to obtain an accurate representation of the excitation and response.

Example 5.3

Solve Example 5.1 by the constant average acceleration method using 1t = 0.1 sec.

Solution

1.0 Initial calculations

m = 0.2533 k = 10 c = 0.1592

u0 = 0 u̇0 = 0 p0 = 0

1.1 ü0 =
p0 − cu̇0 − ku0

m
= 0.

1.2 1t = 0.1.

1.3 a1 =
4

(1t)2
m + 2

1t
c = 104.5; a2 =

4

1t
m + c = 10.29; and

a3 = m = 0.2533.

1.4 k̂ = k + a1 = 114.5.

2.0 Calculations for each time step, i = 0, 1, 2, . . .

2.1 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi = pi+1 + 104.5 ui + 10.29 u̇i + 0.2533 üi .

2.2 ui+1 =
p̂i+1

k̂
= p̂i+1

114.5
.

2.3 u̇i+1 =
2

1t
(ui+1 − ui )− u̇i .

2.4 üi+1 =
4

(1t)2
(ui+1 − ui )−

4

1t
u̇i − üi .

3.0 Repetition for the next time step. Steps 2.1 to 2.4 are repeated for successive time steps

and are summarized in Table E5.3, where the theoretical result (from Table E5.1a) is

also included.

Example 5.4

Solve Example 5.1 by the linear acceleration method using 1t = 0.1 sec.

Solution

1.0 Initial calculations

m = 0.2533 k = 10 c = 0.1592

u0 = 0 u̇0 = 0 p0 = 0

= =Section 5.3. For and , Eq. (5.4.15) indicates that the linear accelerationγ β

method is stable if

t1t ≤ 0.551 (5.4.16b)
TnTT

1
2

1
6

However, as in the case of the central difference method, this condition has little signifi-

cance in the analysis of SDF systems because a much shorter time step than 0cance in the analysis of SDF systems because a much shorter time step than 0.551TnTT must

be used to obtain an accurate representation of the excitation and response.

Example 5.3

Example 5.4
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TABLE E5.3 NUMERICAL SOLUTION BY CONSTANT AVERAGE

ACCELERATION METHOD

p̂i üi u̇i ui Theoretical

ti pi (Step 2.1) (Step 2.4) (Step 2.3) (Step 2.2) ui

0.0 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 5.0000 5.0000 17.4666 0.8733 0.0437 0.0328

0.2 8.6603 26.6355 23.1801 2.9057 0.2326 0.2332

0.3 10.0000 70.0837 12.3719 4.6833 0.6121 0.6487

0.4 8.6603 123.9535 −11.5175 4.7260 1.0825 1.1605

0.5 5.0000 163.8469 −38.1611 2.2421 1.4309 1.5241

0.6 0.0000 162.9448 −54.6722 −2.3996 1.4230 1.4814

0.7 0.0000 110.1710 −33.6997 −6.8182 0.9622 0.9245

0.8 0.0000 21.8458 −2.1211 −8.6092 0.1908 0.0593

0.9 0.0000 −69.1988 28.4423 −7.2932 −0.6043 −0.7751

1.0 0.0000 −131.0066 47.3701 −3.5026 −1.1441 −1.2718

1.1 ü0 =
p0 − cu̇0 − ku0

m
= 0.

1.2 1t = 0.1.

1.3 a1 =
6

(1t)2
m + 3

1t
c = 156.8; a2 =

6

1t
m + 2c = 15.52; and

a3 = 2m + 1t

2
c = 0.5146.

1.4 k̂ = k + a1 = 166.8.

2.0 Calculations for each time step, i = 0, 1, 2, . . .

2.1 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi = pi+1 + 156.8ui + 15.52u̇i + 0.5146üi .

2.2 ui+1 =
p̂i+1

k̂
= p̂i+1

166.8
.

2.3 u̇i+1 =
3

1t
(ui+1 − ui )− 2u̇i −

1t

2
üi .

2.4 üi+1 =
6

(1t)2
(ui+1 − ui )−

6

1t
u̇i − 2üi .

3.0 Repetition for the next time step. Steps 2.1 to 2.4 are repeated for successive time steps

and are summarized in Table E5.4, where the theoretical result (from Table E5.1a) is

also included.

Observe that the numerical results obtained by the linear acceleration method are

closer to the theoretical solution (Table E5.4), hence more accurate, than those from the

constant average acceleration method (Table E5.3).
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TABLE E5.4 NUMERICAL SOLUTION BY LINEAR ACCELERATION METHOD

p̂i üi u̇i ui Theoretical

ti pi (Step 2.1) (Step 2.4) (Step 2.3) (Step 2.2) ui

0.0 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 5.0000 5.0000 17.9904 0.8995 0.0300 0.0328

0.2 8.6603 36.5748 23.6566 2.9819 0.2193 0.2332

0.3 10.0000 102.8221 12.1372 4.7716 0.6166 0.6487

0.4 8.6603 185.5991 −12.7305 4.7419 1.1130 1.1605

0.5 5.0000 246.4956 −39.9425 2.1082 1.4782 1.5241

0.6 0.0000 243.8733 −56.0447 −2.6911 1.4625 1.4814

0.7 0.0000 158.6538 −33.0689 −7.1468 0.9514 0.9245

0.8 0.0000 21.2311 0.4892 −8.7758 0.1273 0.0593

0.9 0.0000 −115.9590 31.9491 −7.1539 −0.6954 −0.7751

1.0 0.0000 −203.5678 50.1114 −3.0508 −1.2208 −1.2718

5.5 STABILITY AND COMPUTATIONAL ERROR

5.5.1 Stability

Numerical procedures that lead to bounded solutions if the time step is shorter than some

stability limit are called conditionally stable procedures. Procedures that lead to bounded

solutions regardless of the time-step length are called unconditionally stable procedures.

The average acceleration method is unconditionally stable. The linear acceleration method

is stable if 1t/Tn < 0.551, and the central difference method is stable if 1t/Tn < 1/π .

Obviously, the latter two methods are conditionally stable.

The stability criteria are not restrictive (i.e., they do not dictate the choice of time

step) in the analysis of SDF systems because 1t/Tn must be considerably smaller than

the stability limit (say, 0.1 or less) to ensure adequate accuracy in the numerical results.

Stability of the numerical method is important, however, in the analysis of MDF systems,

where it is often necessary to use unconditionally stable methods (Chapter 16).

5.5.2 Computational Error

Error is inherent in any numerical solution of the equation of motion. We do not discuss

error analysis from a mathematical point of view. Rather, we examine two important char-

acteristics of numerical solutions to develop a feel for the nature of the errors, and then

mention a simple, useful way of managing error.

Consider the free vibration problem

mü + ku = 0 u(0) = 1 and u̇(0) = 0
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0
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Figure 5.5.1 Free vibration solution by four numerical methods (1t/Tn = 0.1) and the theoretical

solution.

for which the theoretical solution is

u(t) = cos ωnt (5.5.1)

This problem is solved by four numerical methods: central difference method, av-

erage acceleration method, linear acceleration method, and Wilson’s method. The last of

these methods is available elsewhere; see the references at the end of the chapter. The

numerical results obtained using 1t = 0.1Tn are compared with the theoretical solution

in Fig. 5.5.1. This comparison shows that some numerical methods may predict that the

displacement amplitude decays with time, although the system is undamped, and that the

natural period is elongated or shortened.

Figure 5.5.2 shows the amplitude decay AD and period elongation PE in the four

numerical methods as a function of 1t/Tn; AD and PE are defined in part (b) of the fig-

ure. The mathematical analyses that led to these data are not presented, however. Three

of the methods predict no decay of displacement amplitude. Wilson’s method contains

decay of amplitude, however, implying that this method introduces numerical damping

in the system; the equivalent viscous damping ratio ζ̄ is shown in part (a) of the fig-

ure. Observe the rapid increase in the period error in the central difference method near

1t/Tn = 1/π , the stability limit for the method. The central difference method intro-

duces the largest period error. In this sense it is the least accurate of the methods con-

sidered. For 1t/Tn less than its stability limit, the linear acceleration method gives the

least period elongation. This property, combined with no amplitude decay, makes this

method the most suitable method (of the methods presented) for SDF systems. However,

=Figure 5.5.1 Free vibration solution by four numerical methods ( t//TnTT 0.1) and the theoreticalsolution by four numerical methods (1t

solution.
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Figure 5.5.2 (a) Amplitude decay versus 1t/Tn ; (b) definition of AD and PE; (c) period elongation

versus 1t/Tn .

we shall arrive at a different conclusion for MDF systems because of stability requirements

(Chapter 16).

The choice of time step also depends on the time variation of the dynamic excita-

tion, in addition to the natural vibration period of the system. Figure 5.5.2 suggests that

1t = 0.1Tn would give reasonably accurate results. The time step should also be short

enough to keep the distortion of the excitation function to a minimum. A very fine time

step is necessary to describe numerically the highly irregular earthquake ground acceler-

ation recorded during earthquakes; typically, 1t = 0.02 sec and the time step chosen for

computing structural response should not be longer.

One useful, although unsophisticated technique for selecting the time step is to solve

the problem with a time step that seems reasonable, then repeat the solution with a slightly

smaller time step and compare the results, continuing the process until two successive

solutions are close enough.

Figure 5.5.2 (a) Amplitude decay versus t//TnTTn ; (b) definition of AD and PE; (c) period elongation1t

versus t//TnTTn .1t
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The preceding discussion of stability and accuracy applies strictly to linear systems.

The reader should consult other references for how these issues affect nonlinear response

analysis.

5.6 NONLINEAR SYSTEMS: CENTRAL DIFFERENCE METHOD

The dynamic response of a system beyond its linearly elastic range is generally not amen-

able to analytical solution even if the time variation of the excitation is described by a

simple function. Numerical methods are therefore essential in the analysis of nonlinear

systems. The central difference method can easily be adapted for solving the nonlinear

equation of motion, Eq. (5.1.3), at time i . Substituting Eqs. (5.3.1), the central difference

approximation for velocity and acceleration, gives Eq. (5.3.2) with kui replaced by ( fS)i ,

which can be rewritten to obtain the following expression for response at time i + 1:

k̂ui+1 = p̂i (5.6.1)

where

k̂ = m

(1t)2
+ c

21t
(5.6.2)

and

p̂i = pi −
[

m

(1t)2
− c

21t

]

ui−1 +
2m

(1t)2
ui − ( fS)i (5.6.3)

Comparing these equations with those for linear systems, it is seen that the only difference

is in the definition for p̂i . With this modification Table 5.3.1 also applies to nonlinear

systems.

The resisting force ( fS)i appears explicitly, as it depends only on the response at

time i , not on the unknown response at time i + 1. Thus it is easily calculated, making the

central difference method perhaps the simplest procedure for nonlinear systems.

5.7 NONLINEAR SYSTEMS: NEWMARK’S METHOD

In this section, Newmark’s method described earlier for linear systems is extended to non-

linear systems. Recall that this method determines the solution at time i + 1 from the

equilibrium condition at time i + 1, i.e., Eq. (5.1.4) for nonlinear systems. Because the

resisting force ( fs)i+1 is an implicit nonlinear function of the unknown ui+1, iteration is

required in this method. This requirement is typical of implicit methods. It is instructive

first to develop the Newton–Raphson method of iteration for static analysis of a nonlinear

SDF system.

approximation for velocity and acceleration, gives Eq. (5.3.2) with kui replaced by fSff ) ,( f )i

= ˆk̂ui+ = p̂= ˆ= ˆi+1

m c= +k̂
t))2 2 t(1t 21t

[ ]

m c 2m= − − + −p̂i pi ui− ui fSff )( f−1 )i
t))2 2 t t))2

[

(1t 21t (1t

1, i.e., Eq. (5.1.4) for nonlinear systems. Because the

resisting force fsff ) is an implicit nonlinear function of the unknown ui+1, iteration is, iteration is( f )i++1

required in this method. This requirement is typical of implicit methods. It is instructive

first to develop the Newton–Raphson method of iteration for static analysis of a nonlinear

SDF system.
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5.7.1 Newton–Raphson Iteration

Dropping the inertia and damping terms in the equation of motion [Eq. (5.1.1)] gives the

nonlinear equation to be solved in a static problem:

fS (u) = p (5.7.1)

The task is to determine the deformation u due to a given external force p, where the

nonlinear force–deformation relation fS(u) is defined for the system to be analyzed.

Suppose that after j cycles of iteration, u( j) is an estimate of the unknown displace-

ment and we are interested in developing an iterative procedure that provides an improved

estimate u( j+1). For this purpose, expanding the resisting force f
( j+1)

S in Taylor series

about the known estimate u( j) gives

f
( j+1)

S = f
( j)

S + ∂ fS

∂u

∣

∣

∣

∣

u( j)

(

u( j+1) − u( j)
)

+ 1

2

∂2 fS

∂u2

∣

∣

∣

∣

u( j)

(

u( j+1) − u( j)
)2 + · · · (5.7.2)

If u( j) is close to the solution, the change in u, 1u( j) = u( j+1) − u( j), will be small and

the second- and higher-order terms can be neglected, leading to the linearized equation

f
( j+1)

S ' f
( j)

S + k
( j)

T 1u( j) = p (5.7.3)

or

k
( j)

T 1u( j) = p − f
( j)

S = R( j) (5.7.4)

where k
( j)

T = ∂ fS

∂u

∣

∣

∣

∣

u( j)

is the tangent stiffness at u( j). Solving the linearized equation

(5.7.4) gives 1u( j) and an improved estimate of the displacement:

u( j+1) = u( j) +1u( j) (5.7.5)

The iterative procedure is described next with reference to Fig. 5.7.1. Associated

with u( j) is the force f
( j)

S , which is not equal to the applied force p, and a residual force

is defined: R( j) = p − f
( j)

S . The additional displacement due to this residual force is

determined from Eq. (5.7.4), leading to u( j+1). This new estimate of the solution is used

to find a new value of the residual force R( j+1) = p− f
( j+1)

S . The additional displacement

1u( j+1) due to this residual force is determined by solving

k
( j+1)

T 1u( j+1) = R( j+1) (5.7.6)

This additional displacement is used to find a new value of the displacement:

u( j+2) = u( j+1) +1u( j+1) (5.7.7)

and a new value of the residual force R( j+2), and the process is continued until convergence

is achieved. This iterative process is known as the Newton–Raphson method.

Convergence rate. It can be proven that near the end of the iteration process

the Newton–Raphson algorithm converges with quadratic rate to the exact solution u, i.e.,
∣

∣ u − u( j+1)
∣

∣ ≤ c
∣

∣u − u( j)
∣

∣

2
, where c is a constant that depends on the second derivative

Dropping the inertia and damping terms in the equation of motion [Eq. (5.1.1)] gives the

nonlinear equation to be solved in a static problem:

=fSff u) p(u

j++1)
f

( j ' f
( j) + j( j) =f f k

(
u( jj) p

)
1ufSff fSff kT

j( j) = − f
( j) = jk

(
u( jj) p f R( jj))

1ukT fSff

j++1) j+ j++1)( j = +1)k
(

u( j R( j1ukT

j++1) = j + ju( j u( jj) u( jj)1u

j+ j+ j++2) = +1) + +1)u( j u( j u( j1u

j++2), and the process is continued until convergenceand a new value of the residual force R( j , and the process is continued until convergence

is achieved. This iterative process is known as the Newton–Raphson method.
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Figure 5.7.1 Newton–Raphson iteration: (a) applied and resisting forces; (b) residual force.

of the resisting force or the change in tangent stiffness. This result implies that near the

solution the error in the ( j + 1)th iterate (equal to the difference between u and u( j+1)) is

less than the square of the error in the previous iterate u( j).

Convergence criteria. After each iteration the solution is checked and the iter-

ative process is terminated when some measure of the error in the solution is less than a

specified tolerance. Typically, one or more of the following convergence (or acceptance)

criteria are enforced:

1. Residual force is less than a tolerance:
∣

∣R( j)
∣

∣ ≤ εR (5.7.8a)

Conventional values for the tolerance εR range from 10−3 to 10−8.

2. Change in displacement is less than a tolerance:
∣

∣1u( j)
∣

∣ ≤ εu (5.7.8b)

Conventional values for the tolerance εu range from 10−3 to 10−8.

3. Incremental work done by the residual force acting through the change in displace-

ment is less than a tolerance:

1
2

∣

∣1u( j) R( j)
∣

∣ ≤ εw (5.7.8c)

Tolerance εw must be at or near the computer (machine) tolerance because the left

side is a product of small quantities.

Modified Newton–Raphson iteration. To avoid computation of the tangent

stiffness for each iteration, the initial stiffness at the beginning of a time step may be used

Figure 5.7.1 Newton–Raphson iteration: (a) applied and resisting forces; (b) residual force.

To avoid computation of the tangent

stiffness for each iteration, the initial stiffness at the beginning of a time step may be used

Modified Newton–Raphson iteration.
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Figure 5.7.2 Modified Newton–Raphson iteration: (a) applied and resisting forces; (b) residual

force.

as the constant stiffness for all iterations within the time step. This modified Newton–

Raphson iteration is illustrated in Fig. 5.7.2, where it can be seen that convergence is now

slower. At each iteration the residual force R( j) is now larger, as seen by comparing Figs.

5.7.1 and 5.7.2, and more iterations will be required to achieve convergence.

5.7.2 Newmark’s Method

We have now developed Newton–Raphson iteration to solve a nonlinear equilibrium equa-

tion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is to

determine response quantities ui+1, u̇i+1 and üi+1 at time i + 1 that satisfy Eq. (5.1.4),

which can be written as

( f̂S) i+1 = pi+1 (5.7.9)

where

( f̂S)i+1 = müi+1 + cu̇i+1 + ( fS)i+1 (5.7.10)

By including the inertia and damping forces in defining the “resisting force” f̂S , the dy-

namic analysis equation (5.7.9) is of the same form as the static analysis equation (5.7.1).

Thus, we can adapt the Taylor series expansion of Eq. (5.7.2) to Eq. (5.7.9), interpret

( f̂s)i+1 as a function of ui+1, and drop the second- and higher-order terms to obtain an

equation analogous to Eq. (5.7.3):

( f̂S)
( j+1)

i+1 ' ( f̂S)
( j)

i+1 +
∂ f̂S

∂ui+1

1u( j) = pi+1 (5.7.11)

Modified Newton–Raphson iteration: (a) applied and resisting forces; (b) residual

as the constant stiffness for all iterations within the time step. This modified Newton–

Raphson iteration is illustrated in Fig. 5.7.2, where it can be seen that convergence is now

slower. At each iteration the residual force

We have now developed Newton–Raphson iteration to solve a nonlinear equilibrium equa-

tion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is totion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is totion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is totion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is to

+determine response quantities ui+1, u̇i+ and üi+ at time i 1 that satisfy Eq. (5.1.4),+1 +1

which can be written as

ˆ =f̂ pi+( ffSff ) i++1 +1

ˆ = + +f̂ mmüi+ ccu̇i+ fSff )( ffSff ) ( f)i+ )i++1 +1 +1 +1

f̂̂f∂ fˆ j+ ˆ+1) j fSff
f̂Sff )

( j ' f̂Sff )
( jj) + j =f̂Sff f̂Sff u( jj) pi+( f 1u +1)

( j

i+ )
( j)

i++1 +1 ui+∂u +1

( f



Sec. 5.7 Nonlinear Systems: Newmark’s Method 187

where

1u( j) = u
( j+1)

i+1 − u
( j)

i+1 (5.7.12)

Differentiating Eq. (5.7.10) at the known displacement u
( j)

i+1 gives

∂ f̂S

∂ui+1

= m
∂ ü

∂ui+1

+ c
∂ u̇

∂ui+1

+ ∂ fS

∂ui+1

where the derivatives in inertia and damping terms on the right side can be determined

from Eqs. (5.4.8) and (5.4.9), respectively, which were derived from Newmark’s equa-

tion (5.4.1):

∂ ü

∂ui+1

= 1

β(1t)2

∂ u̇

∂ui+1

= γ

β1t

Putting together the preceding two equations and recalling the definition of tangent stiff-

ness (Section 5.7.1) gives

(k̂T )
( j)

i+1 ≡
∂ f̂S

∂ui+1

= (k̂T )
( j)

i+1 +
γ

β1t
c + 1

β(1t)2
m (5.7.13)

With the preceding definition of (k̂T )
( j)

i+1, Eq. (5.7.11) can be written as

(k̂T )
( j)

i+11u( j) = pi+1 − ( f̂S)
( j)

i+1 ≡ R̂
( j)

i+1 (5.7.14)

Substituting Eqs. (5.4.8) and (5.4.9) in Eq. (5.7.10) and then combining it with the right

side of Eq. (5.7.14) leads to the following expression for the residual force:

R̂
( j)

i+1 = pi+1 − ( fS)
( j)

i+1 −
[

1

β(1t)2
m + γ

β1t
c

]

(

u
( j)

i+1 − ui

)

+
[

1

β1t
m +

(

γ

β
− 1

)

c

]

u̇i

+
[(

1

2β
− 1

)

m +1t

(

γ

2β
− 1

)

c

]

üi (5.7.15)

Note that the linearized equation (5.7.14) for the jth iteration in dynamic analysis is similar

in form to the corresponding equation (5.7.4) in static analysis. However, there is an im-

portant difference in the two equations in that damping and inertia terms are now included

in both the tangent stiffness k̂T (Eq. 5.7.13) and the residual force R̂ (Eq. 5.7.15). The first,

fourth, and fifth terms on the right side of Eq. (5.7.15) do not change from one iteration

to the next. The second and third terms need to be updated with every new estimate of

displacement u
( j)

i+1 during iteration.

Equation (5.7.14) provides the basis for the Newton–Raphson iteration method, sum-

marized in step 3.0 of Table 5.7.1. Once ui+1 is determined, the rest of the computation

proceeds as for linear systems; in particular, üi+1 and u̇i+1 are determined from Eqs. (5.4.8)

and (5.4.9), respectively. Table 5.7.1 summarizes Newmark’s algorithm as it might be im-

plemented on the computer.

j++1)j = ( j − ( j)
u( jj) u

(
u

(
1u u

( j

i+ u
( j)

i++1 +1

f̂̂f ü u̇ fSff∂ f ∂u ∂u ∂ ffSff = + +m c
ui+ ui+ ui+ ui+∂u ∂u ∂u ∂u+1 +1 +1 +1

ˆ ˆj j
)
( j jj) = − f̂Sff )

( jj) ≡ ( j)
k̂T ) u( jj) pi+ f̂Sff(k 1u ( f+1)

( j)

i+ )
( j)

i+
( j)

i++11 +1 +1R̂R

[ ] [ ( ) ]

( )1 1γ
(

γj
R

( j) = − fSff )
( jj) − + ( j) − + + −pi+ m c

]

(

u
(

ui

)

m 1

)

c

]

u̇i( f+1R
( j)

i+ )
( j)

i+ u
( j)

i++1 +1 +1t))2 t t

[

β(1t β1t

[

β1t

(

β
[( )

β(1t)
(

β1t
) ]

1 γ+ − + −1

)

m t 1

)

c

]

üi1t

[(

2β

(

2β

(Eq. 5.7.15). The first,

fourth, and fifth terms on the right side of Eq. (5.7.15) do not change from one iteration

to the next. The second and third terms need to be updated with every new estimate ofto the next. The second and third terms need to be updated with every new estimate of
( j)

displacement u
(

during iteration.u
( j)

i++1

Note that the linearized equation (5.7.14) for the jth iteration in dynamic analysis is similar

in form to the corresponding equation (5.7.4) in static analysis. However, there is an im-

portant difference in the two equations in that damping and inertia terms are now includedportant difference in the two equations in that damping and inertia terms are now included
ˆin both the tangent stiffness k̂T (Eq. 5.7.13) and the residual force

portant difference in the two equations in that damping and inertia terms are now included

R

portant difference in the two equations in that damping and inertia terms are now included

R̂
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TABLE 5.7.1 NEWMARK’S METHOD: NONLINEAR SYSTEMS

Special cases

(1) Average acceleration method (γ = 1
2
, β = 1

4
)

(2) Linear acceleration method (γ = 1
2
, β = 1

6
)

1.0 Initial calculations

1.1 State determination: ( fS)0 and (kT )0.

1.2 ü0 =
p0 − cu̇0 − ( fS)0

m
.

1.3 Select 1t .

1.4 a1 =
1

β(1t)2
m + γ

β1t
c; a2 =

1

β1t
m +

(

γ

β
− 1

)

c; and

a3 =
(

1

2β
− 1

)

m +1t

(

γ

2β
− 1

)

c.

2.0 Calculations for each time instant, i = 0, 1, 2, . . .

2.1 Initialize j = 1, u
( j)

i+1
= ui , ( fS)

( j)

i+1
= ( fS)i , and (kT )

( j)

i+1
= (kT )i .

2.2 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi .

3.0 For each iteration, j = 1, 2, 3 . . .

3.1 R̂
( j)

i+1
= p̂i+1 − ( fS)

( j)

i+1
− a1 u

( j)

i+1
.

3.2 Check convergence; If the acceptance criteria are not met, implement steps 3.3 to

3.7; otherwise, skip these steps and go to step 4.0.

3.3 (k̂T )
( j)

i+1
= (kT )

( j)

i+1
+ a1.

3.4 1u( j) = R̂
( j)

i+1
÷ (k̂T )

( j)

i+1
.

3.5 u
( j+1)

i+1
= u

( j)

i+1
+1u( j).

3.6 State determination: ( fS)
( j+1)

i+1
and (kT )

( j+1)

i+1
.

Replace j by j + 1 and repeat steps 3.1 to 3.6; denote final value as ui+1.

4.0 Calculations for velocity and acceleration

4.1 u̇i+1 =
γ

β1t
(ui+1 − ui )+

(

1− γ

β

)

u̇i +1t

(

1− γ

2β

)

üi .

4.2 üi+1 =
1

β(1t)2
(ui+1 − ui )−

1

β1t
u̇i −

(

1

2β
− 1

)

üi .

5.0 Repetition for next time step. Replace i by i + 1 and implement steps 2.0 to 4.0 for the

next time step.

Example 5.5

An SDF system has the same properties as in Example 5.1, except that the restoring force–

deformation relation is elastoplastic with yield deformation u y = 0.75 in. and yield force

fy = 7.5 kips (Fig. E5.5). Determine the response u(t) of this system (starting from rest)

to the half-cycle sine pulse force in Fig. E5.1 using the constant average acceleration method

with 1t = 0.1 sec and Newton–Raphson iteration.

Calculations for each time instant, i

=For each iteration, j 1, 2, 3 . . .

=each time instant, ieach time instant, i 0, 1, 2, . . ., . . .

Example 5.5



Sec. 5.7 Nonlinear Systems: Newmark’s Method 189

10

1

10

1

10

1

7.5

0.75

-7.5

u, in.

fS, kips

o

ba

cd

e

Figure E5.5

Solution

1.0 Initial calculations

m = 0.2533 k = 10 c = 0.1592

u0 = 0 u̇0 = 0 p0 = 0

1.1 State determination: ( fS)0 = 0 and (kT )0 = k = 10.

1.2 ü0 =
p0 − cu̇0 − ( fS)0

m
= 0.

1.3 1t = 0.1.

1.4 a1 =
4

(1t)2
m + 2

1t
c = 104.5040; a2 =

4

1t
m + c = 10.2912; and

a3 = m = 0.2533.

As an example, the calculations of steps 2.0, 3.0 and 4.0 in Table 5.7.1, are implemented as

follows for the time step that begins at 0.3 sec and ends at 0.4 sec.

2.0 Calculations for i = 3

2.1 Initialize j = 1

u
(1)

i+1
= ui = 0.6121, ( fS)

(1)

i+1
= ( fS)i = 6.1206, and (kT )

(1)

i+1
= (kT )i = 10.

2.2 p̂i+1 = pi+1 + 104.5ui + 10.29u̇i + 0.2533üi = 123.9535.

3.0 First iteration, j = 1

3.1 R̂
(1)

i+1
= p̂i+1 − ( fS)

(1)

i+1
− 104.5u

(1)

i+1

= 123.9535− 6.1206− 63.9630 = 53.8698.

3.2 Check of convergence: Because

∣

∣

∣
R̂

(1)

i+1

∣

∣

∣
= 53.8698 exceeds εR = 10−3, chosen for

this example, implement steps 3.3 to 3.7.



190 Numerical Evaluation of Dynamic Response Chap. 5

3.3 (k̂T )
(1)

i+1
= (kT )

(1)

i+1
+ a1 = 10+ 104.5040 = 114.5040.

3.4 1u(1) = R̂
(1)

i+1
÷ (k̂T )

(1)

i+1
= 53.8698÷ 114.5040 = 0.4705.

3.5 u
(2)

i+1
= u

(1)

i+1
+1u(1) = 0.6121+ 0.4705 = 1.0825.

3.6 State determination: ( fS)
(2)

i+1
and (kT )

(2)

i+1

( fS)
(2)

i+1
= ( fS)i + k(u

(2)

i+1
− ui ) = 6.1206+ (10× 0.4705) = 10.8253.

Because ( fS)
(2)

i+1
> fy , ( fS)

(2)

i+1
= fy = 7.5 and (kT )

(2)

i+1
= 0.

3.0 Second iteration, j = 2

3.1 R̂
(2)

i+1
= p̂i+1 − ( fS)

(2)

i+1
− 104.5u

(2)

i+1

= 123.9535− 7.5− 113.1282 = 3.3253.

3.2 Check of convergence: Because

∣

∣

∣
R̂

(2)

i+1

∣

∣

∣
= 3.3253 exceeds εR , implement steps 3.3

to 3.7.

3.3 (k̂T )
(2)

i+1
= (kT )

(2)

i+1
+ a1 = 0+ 104.5040 = 104.5040.

3.4 1u(2) = R̂
(2)

i+1
÷ (k̂T )

(2)

i+1
= 3.3253÷ 104.5040 = 0.0318.

3.5 u
(3)

i+1
= u

(2)

i+1
+1u(2) = 1.0825+ 0.0318 = 1.1143.

3.6 State determination: ( fS)
(3)

i+1
and (kT )

(3)

i+1

( fS)
(3)

i+1
= ( fS)i + k(u

(3)

i+1
− ui ) = 6.1206+ (10× 0.5023) = 11.1434.

Because ( fS)
(3)

i+1
> fy , ( fS)

(3)

i+1
= fy = 7.5 and (kT )

(3)

i+1
= 0.

3.0 Third iteration, j = 3

3.1 R̂
(3)

i+1
= p̂i+1 − ( fS)

(3)

i+1
− 104.5u

(3)

i+1

= 123.9535− 7.5− 116.4535 = 0.

3.2 Check of convergence: Because

∣

∣

∣
R̂

(3)

i+1

∣

∣

∣
= 0 is less than εR , skip steps 3.3 to 3.7;

set u4 = u
(3)

4
= 1.1143.

4.0 Calculations for velocity and acceleration

4.1 u̇i+1 =
2

1t
(ui+1 − ui )− u̇i =

2

0.1
(1.1143− 0.6121)− 4.683 = 5.3624.

4.2 üi+1 =
4

(1t)2
(ui+1 − ui )−

4

1t
u̇i − üi

= 4

(0.1)2
(1.1143− 0.6121)− 4

0.1
4.6833− 12.3719 = 1.2103.

These calculations for the time step 0.3 to 0.4 sec are summarized in Table E5.5.

5.0 Repetition for next time step. After replacing i by i + 1, steps 2.0 to 4.0 are repeated

for successive time steps and are summarized in Table E5.5.
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TABLE E5.5 NUMERICAL SOLUTION BY CONSTANT AVERAGE ACCELERATION METHOD WITH

NEWTON–RAPHSON ITERATION

R̂i or (kT )i or (k̂T )i or ui or

ti pi R̂
( j)

i
(kT )

( j)

i
(k̂T )

( j)

i
1u( j) u

( j+1)

i
( fS)

( j+1)

i
u̇i üi

0.0 0.0000 10 0.0000 0.0000 0.0000

0.1 5.0000 5.0000 10 114.504 0.0437 0.0437 0.4367 0.8733 17.4666

0.2 8.6603 21.6355 10 114.504 0.1889 0.2326 2.3262 2.9057 23.1801

0.3 10.0000 43.4481 10 114.504 0.3794 0.6121 6.1206 4.6833 12.3719

0.4 8.6603 53.8698 10 114.504 0.4705 1.0825 7.5000

3.3253 0 104.504 0.0318 1.1143 7.5000 5.3624 1.2103

0.5 5.0000 55.9918 0 104.504 0.5071 1.6214 7.5000 4.7792 −12.8735

0.6 0.0000 38.4230 0 104.504 0.3677 1.9891 7.5000 2.5742 −31.2270

0.7 0.0000 11.0816 0 104.504 0.1060 2.0951 7.5000 −0.4534 −29.3242

0.8 0.0000 −19.5936 0 104.504 −0.1875 1.9076 5.6251

1.8749 10 114.504 0.0164 1.9240 5.7888 −2.9690 −20.9876

0.9 0.0000 −41.6593 10 114.504 −0.3638 1.5602 2.1506 −4.3075 −5.7830

1.0 0.0000 −47.9448 10 114.504 −0.4187 1.1415 −2.0366 −4.0668 10.5962

During the next three time steps (after 0.4 sec), the system is on the yielding branch

ab. In other words, the stiffness ki = 0 remains constant, and no iteration is necessary.

Between 0.6 and 0.7 sec the velocity changes sign from positive to negative, implying that

the deformation begins to decrease, the system begins to unload along the branch bc, and

the stiffness ki = 10. However, we have ignored this change during the time step, implying

that the system stays on the branch ab and no iteration is necessary.

The computation for the time step starting at 0.6 sec can be made more accurate by

finding, by a process of iteration, the time instant at which u̇ = 0. Then the calculations

can be carried out with stiffness ki = 0 over the first part of the time step and with ki = 10

over the second part of the time step. Alternatively, a smaller time step can be used for

improved accuracy.

Note that the solution over a time step is not exact because equilibrium is satisfied

only at the beginning and end of the time step, not at all time instants within the time step.

This implies that the energy balance equation (Chapter 7) is violated. The discrepancy in

energy balance, usually calculated at the end of the excitation, is an indication of the error

in the numerical solution.

Example 5.6

Repeat Example 5.5 using modified Newton–Raphson iteration within each time step of 1t =
0.1 sec.

Solution The procedure of Table 5.7.1 is modified to use the initial stiffness at the beginning

of a time step as the constant stiffness for all iterations within the time step. The computations

in steps 1.0 and 2.0 are identical to those presented in Example 5.5, but step 3.0 is now differ-

ent. To illustrate these differences, step 3.0 in the modified Table 5.7.1 is implemented for the

time step that begins at 0.3 sec and ends at 0.4 sec.

During the next three time steps (after 0.4 sec), the system is on the yielding branchDuring the next three time steps (after 0.4 sec), the system is on the yielding branch

=ab. In other words, the stiffness ki 0 remains constant, and no iteration is necessary.

Between 0.6 and 0.7 sec the velocity changes sign from positive to negative, implying that

the deformation begins to decrease, the system begins to unload along the branch bc, andthe deformation begins to decrease, the system begins to unload along the branch

=the stiffness ki 10. However, we have ignored this change during the time step, implying

that the system stays on the branch ab and no iteration is necessary.

The computation for the time step starting at 0.6 sec can be made more accurate byThe computation for the time step starting at 0.6 sec can be made more accurate by

=finding, by a process of iteration, the time instant at which u̇ 0. Then the calculationsfinding, by a process of iteration, the time instant at which

= =can be carried out with stiffness ki 0 over the first part of the time step and with ki 10

over the second part of the time step. Alternatively, a smaller time step can be used for

improved accuracy.

Note that the solution over a time step is not exact because equilibrium is satisfied

only at the beginning and end of the time step, not at all time instants within the time step.

This implies that the energy balance equation (Chapter 7) is violated. The discrepancy in

energy balance, usually calculated at the end of the excitation, is an indication of the error

in the numerical solution.

Example 5.6
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3.0 First iteration, j = 1

3.1 R̂
(1)

i+1
= p̂i+1 − ( fS)

(1)

i+1
− 104.5 u

(1)

i+1

= 123.9535− 6.1206− 63.9630 = 53.8698.

3.2 Check of convergence: Because

∣

∣

∣
R̂

(1)

i+1

∣

∣

∣
= 53.8698 exceeds εR , implement steps

3.3 to 3.7.

3.3 (k̂T )
i+1

= (kT )
i+1

+ a1 = 10+ 104.5040 = 114.5040.

3.4 1u(1) = R̂
(1)

i+1
÷ (k̂T )

i+1
= 53.8698÷ 114.5040 = 0.4705.

3.5 u
(2)

i+1
= u

(1)

i+1
+1u(1) = 0.6121+ 0.4705 = 1.0825.

3.6 State determination: ( fS)
(2)

i+1

( fS)
(2)

i+1
= ( fS)i + k

(

u
(2)

i+1
− ui

)

= 6.1206+ (10× 0.4705) = 10.8253.

Because ( fS)
(2)

i+1
> fy , ( fS)

(2)

i+1
= fy = 7.5.

3.0 Second iteration j = 2

3.1 R̂
(2)

i+1
= p̂i+1 − ( fS)

(2)

i+1
− 104.5u

(2)

i+1

= 123.9535− 7.5− 113.1282 = 3.3253.

3.2 Check of convergence: Because

∣

∣

∣
R̂

(2)

i+1

∣

∣

∣
= 3.3253 exceeds εR , implement steps 3.3

to 3.7.

3.3 (k̂T )
i+1

= 114.5040.

3.4 1u(2) = R̂
(2)

i+1
÷ (k̂T )

i+1
= 3.3253÷ 114.5040 = 0.0290.

3.5 u
(3)

i+1
= u

(2)

i+1
+1u(2) = 1.0825+ 0.0290 = 1.1116.

3.6 State determination: ( fS)
(3)

i+1

( fS)
(3)

i+1
= ( fS)i + k(u

(3)

i+1
− ui ) = 6.1206+ (10× 0.5000) = 11.1157.

Because ( fS)
(3)

i+1
> fy , ( fS)

(3)

i+1
= fy = 7.5.

3.0 Third iteration, j = 3

3.1 R̂
(3)

i+1
= p̂i+1 − ( fS)

(3)

i+1
− 104.5u

(3)

i+1

= 123.9535− 7.5− 116.1631 = 0.2904.

3.2 Check of convergence: Because

∣

∣

∣
R̂

(3)

i+1

∣

∣

∣
= 0.2904 exceeds εR , implement steps 3.3

to 3.7.

3.3 (k̂T )
i+1

= 114.5040.

3.4 1u(3) = R̂
(3)

i+1
÷ (k̂T )

i+1
= 0.2904÷ 114.5040 = 0.0025.
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3.5 u
(4)

i+1
= u

(3)

i+1
+1u(3) = 1.1116+ 0.0025 = 1.1141.

3.6 State determination: ( fS)
(4)

i+1

( fS)
(4)

i+1
= ( fS)i + k(u

(4)

i+1
− ui ) = 6.1206+ (10× 0.5020) = 11.1410.

Because ( fS)
(4)

i+1
> fy , ( fS)

(4)

i+1
= fy = 7.5.

These calculations and those for additional iterations during the time step 0.3 to 0.4 sec are

shown in Table E5.6.

TABLE E5.6 NUMERICAL SOLUTION BY CONSTANT AVERAGE ACCELERATION METHOD WITH

MODIFIED NEWTON–RAPHSON ITERATION

R̂i or (kT )i or (k̂T )i or ui or

ti pi R̂
( j)

i
(kT )

( j)

i
(k̂T )

( j)

i
1u( j) u

( j+1)

i
( fS)

( j+1)

i
u̇i üi

0.0 0.0000 10 0.0000 0.0000 0.0000

0.1 5.0000 5.0000 10 114.504 0.0437 0.0437 0.4367 0.8733 17.4666

0.2 8.6603 21.6355 10 114.504 0.1889 0.2326 2.3262 2.9057 23.1801

0.3 10.0000 43.4481 10 114.504 0.3794 0.6121 6.1206 4.6833 12.3719

0.4 8.6603 53.8698 10 114.504 0.4705 1.0825 7.5000

3.3253 0.02904 1.1116 7.5000

0.2904 2.536E-3 1.1141 7.5000

2.536E-2 2.215E-4 1.1143 7.5000

2.215E-3 1.934E-5 1.1143 7.5000 5.3623 1.2095

0.5 5.0000 55.9912 0 104.504 0.5071 1.6214 7.5000 4.7791 −12.8734

0.6 0.0000 38.4222 0 104.504 0.3677 1.9891 7.5000 2.5741 −31.2270

0.7 0.0000 11.0810 0 104.504 0.1060 2.0951 7.5000 −0.4534 −29.3242

0.8 0.0000 −19.5936 0 104.504 −0.1875 1.9076 5.6250

1.8750 1.794E-2 1.9256 5.8044

−0.1794 −1.717E-3 1.9238 5.7873

1.717E-2 1.643E-4 1.9240 5.7889

1.643E-3 −1.572E-5 1.9240 5.7888 −2.9690 −20.9879

0.9 0.0000 −41.6600 10 114.504 −0.3638 1.5602 2.1505 −4.3076 −5.7824

1.0 0.0000 −47.9451 10 114.504 −0.4187 1.1414 −2.0367 −4.0668 10.5969

The original Newton–Raphson iteration converges more rapidly than the modified

Newton–Raphson iteration, as is apparent by comparing Tables E5.5 and E5.6 that summarize

results from the two methods, respectively. Observe the following: (1) The results of the first

iteration are identical in the two cases because both use the initial tangent stiffness. Conse-

quently, the resisting force ( fS)
(2)

i+1
and the residual force R̂

(2)

i+1
are identical. (2) By using

the current tangent stiffness (kT )
(2)

i+1
and the associated value of (k̂T )

(2)

i+1
from Eq. (5.7.13) in

the second iteration, the original Newton–Raphson method leads to a smaller residual force
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R̂
(3)

i+1
= 0 (Example 5.5) compared to R̂

(3)

i+1
= 0.2904 from the modified Newton–Raphson

method (Example 5.6). (3) Because at each iteration the residual force R̂
( j)

i+1
is now smaller,

convergence is achieved in fewer iterations; for this time step of this example, two iterations

are required in the original Newton–Raphson method (Example 5.5) compared to five itera-

tions in the modified Newton–Raphson method (Example 5.6).
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P R O B L E M S

5.1 In Section 5.2 we developed recurrence formulas for numerical solution of the equation of

motion of a linear SDF system based on linear interpolation of the forcing function p(t) over

each time step. Develop a similar procedure using a piecewise-constant representation of the

forcing function wherein the value of the force in the interval ti to ti+1 is a constant equal to

p̃i (Fig. P5.1). Show that the recurrence formulas for the response of an undamped system

are

ui+1 = ui cos(ωn 1ti )+ u̇i
sin(ωn 1ti )

ωn
+ p̃i

k
[1− cos(ωn 1ti )]

u̇i+1 = ui [−ωn sin(ωn 1ti )]+ u̇i cos(ωn 1ti )+
p̃i

k
ωn sin(ωn 1ti )

Specialize the recurrence formulas for the following definition of the piecewise-constant force:

p̃i = (pi + pi+1)/2. Write the recurrence formulas in the following form:

ui+1 = Aui + Bu̇i + Cpi + Dpi+1

u̇i+1 = A′ui + B′u̇i + C ′ pi + D′ pi+1

with equations for the constants A, B, C , . . . , D′.
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p

t~ ~

pi+2

pi+1

pi

pi
~

pi+1
~

ti ti+1 ti+2 Figure P5.1

∗5.2 Solve Example 5.1 using the piecewise-constant approximation of the forcing function; ne-

glect damping in the SDF system.
∗5.3 Solve the problem in Example 5.1 by the central difference method, implemented by a com-

puter program in a language of your choice, using 1t = 0.1 sec. Note that this problem was

solved as Example 5.2 and that the results were presented in Table E5.2.
∗5.4 Repeat Problem 5.3 using 1t = 0.05 sec. How does the time step affect the accuracy of the

solution?
∗5.5 An SDF system has the same mass and stiffness as in Example 5.1, but the damping ratio

is ζ = 20%. Determine the response of this system to the excitation of Example 5.1 by

the central difference method using 1t = 0.05 sec. Plot the response as a function of time,

compare with the solution of Problem 5.3, and comment on how damping affects the peak

response.
∗5.6 Solve the problem in Example 5.1 by the central difference method using 1t = 1

3
sec. Carry

out your solution to 2 sec, and comment on what happens to the solution and why.
∗5.7 Solve the problem in Example 5.1 by the constant average acceleration method, implemented

by a computer program in a language of your choice, using 1t = 0.1 sec. Note that this

problem was solved as Example 5.3, and the results are presented in Table E5.3. Compare

these results with those of Example 5.2, and comment on the relative accuracy of the constant

average acceleration and central difference methods.
∗5.8 Repeat Problem 5.7 using 1t = 0.05 sec. How does the time step affect the accuracy of the

solution?
∗5.9 Solve the problem in Example 5.1 by the constant average acceleration method using 1t = 1

3
sec. Carry out the solution to 2 sec, and comment on the accuracy and stability of the solution.

∗5.10 Solve the problem of Example 5.1 by the linear acceleration method, implemented by a com-

puter program in a language of your choice, using 1t = 0.1 sec. Note that this problem

was solved as Example 5.4 and that the results are presented in Table E5.4. Compare with

the solution of Example 5.3, and comment on the relative accuracy of the constant average

acceleration and linear acceleration methods.
∗5.11 Repeat Problem 5.10 using 1t = 0.05 sec. How does the time step affect the accuracy of the

solution?

*Denotes that a computer is necessary to solve this problem.
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∗5.12 Solve the problem of Example 5.5 by the central difference method, implemented by a com-

puter program in a language of your choice, using 1t = 0.05 sec.
∗5.13 Solve Example 5.5 by the constant average acceleration method with Newton–Raphson

iteration, implemented by a computer program in a language of your choice. Note that this

problem was solved as Example 5.5 and the results were presented in Table E5.5.
∗5.14 Solve Example 5.6 by the constant average acceleration method with modified Newton–

Raphson iteration, implemented by a computer program in a language of your choice. Note

that this problem was solved as Example 5.6 and the results were presented in Table E5.6.
∗5.15 Solve Example 5.5 by the linear acceleration method with Newton–Raphson iteration using

1t = 0.1 sec.
∗5.16 Solve Example 5.5 by the linear acceleration method with modified Newton–Raphson itera-

tion using 1t = 0.1 sec.

*Denotes that a computer is necessary to solve this problem.


